Counting and Constructing Minimal Spanning Trees
نویسنده
چکیده
We revisit the minimal spanning tree problem in order to develop a theory of construction and counting of the minimal spanning trees in a network. The theory indicates that the construction of such trees consists of many di erent choices, all independent of each other. These results suggest a block approach to the construction of all minimal spanning trees in the network, and an algorithm to that e ect is outlined as well as a formula for the number of minimal spanning trees.
منابع مشابه
Counting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملOn Central Spanning Trees of a Graph
We consider the collection of all spanning trees of a graph with distance between them based on the size of the symmetric difference of their edge sets. A central spanning tree of a graph is one for which the maximal distance to all other spanning trees is minimal. We prove that the problem of constructing a central spanning tree is algorithmically difficult and leads to an NP-complete problem.
متن کاملApproximately Counting Locally-Optimal Structures
In general, constructing a locally-optimal structure is a little harder than constructing an arbitrary structure, but significantly easier than constructing a globally-optimal structure. A similar situation arises in listing. In counting, most problems are #P-complete, but in approximate counting we observe an interesting reversal of the pattern. Assuming that #BIS is not equivalent to #SAT und...
متن کاملOn relation between the Kirchhoff index and number of spanning trees of graph
Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...
متن کاملCycletrees: Flexible Interconnection Graphs for Parallel Computing
Natural cycletrees, formally deened in this report, is a subclass of Hamiltonian graphs with maximum degree 3 that contain a binary spanning tree. A natural cycletree used as an interconnection network thus supports directly broadcasting through the binary tree as well as nearest-neighbour communication through the cycle. Natural cycle-trees have several other interesting properties, e.g., they...
متن کامل